吴国庆()
青年副研究员、硕导
系所中心:生物医学工程系 职称:青年副研究员 职务: 研究领域:人工智能与模式识别、.医学信号处理、计算机辅助诊断 个人简介: 联系电话: 电子邮箱:guoqingwu@fudan.edu.cn 办公地点:江湾校区交叉二号楼B5021 个人简介
吴国庆,复旦大学生物医学工程中心青年副研究员。于2019年获复旦大学生物医学工程专业博士学位,2019年至2022年在复旦大学电子科学与技术流动站从事博士后研究。主持国家自然科学基金青年基金项目和中国博士后科学基金面上项目等;以第一作者在IEEE Trans. Med. Imaging、European Radiology、Computers in Biology and Medicine等期刊发表SCI论文20余篇,获权专利6项;2019年入选获“上海市超级博士后”,2023年获复旦大学“优秀博士后”。研究领域包括:医学影像分析,计算机辅助诊断,计算机视觉和模式识别等。兼职担任中国电子学会第十一届理事会常务理事,中国电子学会青年工作委员会主任委员,全国电子信息学科建设(推进)委员会主任。 主要研究方向
1.人工智能与模式识别(机器学习,深度学习,大模型,多模态) 2.医学信号处理(核磁共振,超声,CT,WSI,scRNA-seq) 3.计算机辅助诊断 学术任职
上海市社会医疗机构协会人工智能与远程超声专委会委员 学习/工作经历
2009年9月-2013年6月,淮南师范学院,通信工程,本科 2013年9月-2013年6月,重庆大学,信号与信息处理,硕士 2016年9月-2019年6月,复旦大学,生物医学工程,博士 2019年7月-2022年2月,复旦大学,博士后 2022年3月-至今,复旦大学,青年副研究员 代表性成果
论文: Guoqing Wu#, Zehang Ning#, Xiaorong Yan, Jianfang Li, Chiyuan Ma, Haixia Cheng, Zixiang Cong, Junjun Li, Shengyu Sun, Yongfei Wang, Xingli Deng, Changzhen Jiang, Hong Chen, Hui Ma, Jinhua Yu*, Yao Zhao*, Nidan Qiao*. Deep Learning based Semi-automated Model can Predict Lineage in Patients with Pituitary Neuroendocrine Tumors. Acta Neuropathologica Communications. 2025.9. Yuan Zheng, Shujun Xia, Zhao Yao, Jianqiao Zhou*, Jinhua Yu*, Guoqing Wu*. Integrating intratumor-peritumor implicit correlation and deep semantic features for ultrasound breast cancer diagnosis. Biomedical Signal Processing and Control. 2025.3 Zehang Ning#; Bojie Yang#; Yuanyuan Wang; Zhifeng Shi; Jinhua Yu*; Guoqing Wu*; Dual-path neural network extracts tumor microenvironment information from whole slide images to predict molecular typing and prognosis of Glioma, Computer Methods and Programs in Biomedicine, 2024, 261,108580 Shiwen Cao, Zhaoyu Hu, Xuan Xie, Yuanyuan Wang, Jinhua Yu, Bojie Yang, Zhifeng Shi, Guoqing Wu*, Integrated diagnosis of glioma based on magnetic resonance images with incomplete ground truth labels, Computers in Biology and Medicine,2024,180,108968. Guoqing Wu, Hao Wang, Xiaojun Ma, et al., SWI and CTP fusion model based on sparse representation method to predict cerebral infarction trend. Frontiers in Neuroscience. 2024, 18:1360459. Guoqing Wu, Zhifeng Shi, Zeyang Li, et al., Study of radiochemotherapy decision-making for young highrisk low-grade glioma patients using a macroscopic and microscopic combined radiomics model, European Radiology, 2023, 18(3): 1-12 Nidan Qiao#, Damin Yu#, Guoqing Wu#, et al., Low-rank fusion convolutional neural network for predictionof remission after stereotactic radiosurgery in patients with acromegaly: a proof-of-concept study. Journal of Pathology,2022, 258(1):49-57. Wu Guoqing, Chen Xi, Shi Zhifeng, et al.,Convolutional neural network with coarse-to-fine resolution fusion and residual learning structures for cross-modality image synthesis. Biomedical Signal Processing and Control,2022,Volume 71, Part B. Wu Guoqing#, Jiang Zhaoshun#, Cai Yuxi, et al. Multi-order brain functional Connectivity network-based Machine learning method for Recognition of delayed Neurocognitive recovery in older Adults undergoing non-cardiac Surgery. Frontiers in Neuroscience,2021:1-13. Xiong Siyu#, Wu Guoqing#, Fan Xitian, et al. MRI‑based brain tumor segmentation using FPGA‑accelerated neural network. BMC Bioinformatics,2021:1-15. Wu Guoqing#, Chen Xi#, Lin Jixian#, et al. Identification of invisible ischemic stroke in noncontrast CT based on novel two-stage convolutional neural network model. Medical Physics, 2021, 48. Pan Jiawei, Wu Guoqing, Yu Jinhua, et al. Detecting the Early Infarct Core on Non-Contrast CT Images with a Deep Learning Residual Network. Journal of Stroke and Cerebrovascular Diseases, 2021, 30(6):105752. Wu Guoqing, Shi Zhifeng, Chen Yinsheng, et al. A Sparse Representation-based Radiomics for Outcome Prediction of Higher Grade Gliomas. Medical Physics, 2018, 46. Wu Guoqing#, Lin Jixian#, Wang Yuanyuan*, et al. Early identification of ischemic stroke in noncontrast computed tomography. Biomedical Signal Processing and Control, 2019, 52(JUL.):41-52. Wu Guoqing, Chen Yinsheng, Wang Yuanyuan*, et al. Sparse representation-based radiomics for the diagnosis of brain tumors. IEEE Transactions on Medical Imaging, 2017. 吴国庆, 李泽榉, 汪源源,等. 基于稀疏表示体系的原发性脑部淋巴瘤和胶质母细胞瘤图像鉴别. 生物医学工程学杂志, 2018, 35(5):7. GuoqingWu, YuanyuanWang, JinhuaYu. 3D Texture Feature Learning for Noninvasive Estimation of Gliomas Pathological Subtype/ International MICCAI Brainlesion Workshop. Springer, Cham, 2018. Wu Guoqing, Wang Yuanyuan*, Yu Jinhua*. Overall Survival Time Prediction for High Grade Gliomas Based on Sparse Representation Framework. Springer, Cham, 2017. Liu Shujun*, Wu Guoqing, Liu Hongqing, et al. Image restoration approach using a joint sparse representation in 3D-transform domain. Digital Signal Processing, 2017, 60:307-323. Liu Shujun*, Wu Guoqing, Zhang Xinzheng, et al. SAR despeckling via classification-based nonlocal and local sparse representation. Neurocomputing, 2016, 219(JAN.5):174-185. 主持项目: 国家自然科学基金青年项目 中国博士后科学基金面上项目 复旦大学人才引进项目 复旦大学医工交叉项目 获奖: 2025年 日内瓦国际发明展金奖 2023年 第二十五届中国国际高新技术成果交易会优秀产品奖 2023年 复旦大学优秀博士后 2022年 复旦大学优秀博士论文 2019年 飞利浦医疗产品创意大赛铜奖 2019年 上海市超级博士后 2018年 博士国家奖学金 授课情况
研究生:现代信息与信号处理理论;系统匹配与连接技术 本科生:走近人工智能 招生方向
|